3.8.91 \(\int \frac {\sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt {c-i c \tan (e+f x)}} \, dx\) [791]

3.8.91.1 Optimal result
3.8.91.2 Mathematica [A] (verified)
3.8.91.3 Rubi [A] (verified)
3.8.91.4 Maple [B] (verified)
3.8.91.5 Fricas [B] (verification not implemented)
3.8.91.6 Sympy [F]
3.8.91.7 Maxima [F(-2)]
3.8.91.8 Giac [F]
3.8.91.9 Mupad [B] (verification not implemented)

3.8.91.1 Optimal result

Integrand size = 45, antiderivative size = 109 \[ \int \frac {\sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt {c-i c \tan (e+f x)}} \, dx=\frac {2 \sqrt {a} B \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{\sqrt {c} f}-\frac {(i A+B) \sqrt {a+i a \tan (e+f x)}}{f \sqrt {c-i c \tan (e+f x)}} \]

output
2*B*arctan(c^(1/2)*(a+I*a*tan(f*x+e))^(1/2)/a^(1/2)/(c-I*c*tan(f*x+e))^(1/ 
2))*a^(1/2)/f/c^(1/2)-(I*A+B)*(a+I*a*tan(f*x+e))^(1/2)/f/(c-I*c*tan(f*x+e) 
)^(1/2)
 
3.8.91.2 Mathematica [A] (verified)

Time = 3.72 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.01 \[ \int \frac {\sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt {c-i c \tan (e+f x)}} \, dx=\frac {2 \sqrt {a} B \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{\sqrt {c} f}+\frac {(-i A-B) \sqrt {a+i a \tan (e+f x)}}{f \sqrt {c-i c \tan (e+f x)}} \]

input
Integrate[(Sqrt[a + I*a*Tan[e + f*x]]*(A + B*Tan[e + f*x]))/Sqrt[c - I*c*T 
an[e + f*x]],x]
 
output
(2*Sqrt[a]*B*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - 
 I*c*Tan[e + f*x]])])/(Sqrt[c]*f) + (((-I)*A - B)*Sqrt[a + I*a*Tan[e + f*x 
]])/(f*Sqrt[c - I*c*Tan[e + f*x]])
 
3.8.91.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.06, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {3042, 4071, 87, 45, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt {c-i c \tan (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt {c-i c \tan (e+f x)}}dx\)

\(\Big \downarrow \) 4071

\(\displaystyle \frac {a c \int \frac {A+B \tan (e+f x)}{\sqrt {i \tan (e+f x) a+a} (c-i c \tan (e+f x))^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {a c \left (\frac {i B \int \frac {1}{\sqrt {i \tan (e+f x) a+a} \sqrt {c-i c \tan (e+f x)}}d\tan (e+f x)}{c}-\frac {(B+i A) \sqrt {a+i a \tan (e+f x)}}{a c \sqrt {c-i c \tan (e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 45

\(\displaystyle \frac {a c \left (\frac {2 i B \int \frac {1}{i a+\frac {i c (i \tan (e+f x) a+a)}{c-i c \tan (e+f x)}}d\frac {\sqrt {i \tan (e+f x) a+a}}{\sqrt {c-i c \tan (e+f x)}}}{c}-\frac {(B+i A) \sqrt {a+i a \tan (e+f x)}}{a c \sqrt {c-i c \tan (e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {a c \left (\frac {2 B \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{\sqrt {a} c^{3/2}}-\frac {(B+i A) \sqrt {a+i a \tan (e+f x)}}{a c \sqrt {c-i c \tan (e+f x)}}\right )}{f}\)

input
Int[(Sqrt[a + I*a*Tan[e + f*x]]*(A + B*Tan[e + f*x]))/Sqrt[c - I*c*Tan[e + 
 f*x]],x]
 
output
(a*c*((2*B*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I 
*c*Tan[e + f*x]])])/(Sqrt[a]*c^(3/2)) - ((I*A + B)*Sqrt[a + I*a*Tan[e + f* 
x]])/(a*c*Sqrt[c - I*c*Tan[e + f*x]])))/f
 

3.8.91.3.1 Defintions of rubi rules used

rule 45
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] &&  !GtQ[c, 0]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4071
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si 
mp[a*(c/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x], x 
, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c 
+ a*d, 0] && EqQ[a^2 + b^2, 0]
 
3.8.91.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 320 vs. \(2 (88 ) = 176\).

Time = 0.39 (sec) , antiderivative size = 321, normalized size of antiderivative = 2.94

method result size
derivativedivides \(-\frac {i \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (-2 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )-B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{2}+i A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}+B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )-A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{f c \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (i+\tan \left (f x +e \right )\right )^{2} \sqrt {a c}}\) \(321\)
default \(-\frac {i \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (-2 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )-B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{2}+i A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}+B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )-A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{f c \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (i+\tan \left (f x +e \right )\right )^{2} \sqrt {a c}}\) \(321\)
parts \(-\frac {i A \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (i \tan \left (f x +e \right )-1\right )}{f c \left (i+\tan \left (f x +e \right )\right )^{2}}+\frac {i B \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (2 i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) \tan \left (f x +e \right ) a c +\ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) \tan \left (f x +e \right )^{2} a c -a c \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right )-i \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}-\tan \left (f x +e \right ) \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}\right )}{f c \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (i+\tan \left (f x +e \right )\right )^{2} \sqrt {a c}}\) \(329\)

input
int((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(1/2),x,m 
ethod=_RETURNVERBOSE)
 
output
-I/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(I*tan(f*x+e)-1))^(1/2)/c*(-2*I*B*ln(( 
a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*c* 
tan(f*x+e)-B*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/ 
(a*c)^(1/2))*a*c*tan(f*x+e)^2+I*A*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2) 
*tan(f*x+e)+I*B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)+B*ln((a*c*tan(f*x 
+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*c+B*(a*c)^(1/ 
2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*tan(f*x+e)-A*(a*c)^(1/2)*(a*c*(1+tan(f*x+e 
)^2))^(1/2))/(a*c*(1+tan(f*x+e)^2))^(1/2)/(I+tan(f*x+e))^2/(a*c)^(1/2)
 
3.8.91.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 332 vs. \(2 (83) = 166\).

Time = 0.27 (sec) , antiderivative size = 332, normalized size of antiderivative = 3.05 \[ \int \frac {\sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt {c-i c \tan (e+f x)}} \, dx=-\frac {c f \sqrt {-\frac {B^{2} a}{c f^{2}}} \log \left (\frac {4 \, {\left (2 \, {\left (B e^{\left (3 i \, f x + 3 i \, e\right )} + B e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} + {\left (c f e^{\left (2 i \, f x + 2 i \, e\right )} - c f\right )} \sqrt {-\frac {B^{2} a}{c f^{2}}}\right )}}{B e^{\left (2 i \, f x + 2 i \, e\right )} + B}\right ) - c f \sqrt {-\frac {B^{2} a}{c f^{2}}} \log \left (\frac {4 \, {\left (2 \, {\left (B e^{\left (3 i \, f x + 3 i \, e\right )} + B e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - {\left (c f e^{\left (2 i \, f x + 2 i \, e\right )} - c f\right )} \sqrt {-\frac {B^{2} a}{c f^{2}}}\right )}}{B e^{\left (2 i \, f x + 2 i \, e\right )} + B}\right ) + 2 \, {\left ({\left (i \, A + B\right )} e^{\left (3 i \, f x + 3 i \, e\right )} + {\left (i \, A + B\right )} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{2 \, c f} \]

input
integrate((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(1/ 
2),x, algorithm="fricas")
 
output
-1/2*(c*f*sqrt(-B^2*a/(c*f^2))*log(4*(2*(B*e^(3*I*f*x + 3*I*e) + B*e^(I*f* 
x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 
1)) + (c*f*e^(2*I*f*x + 2*I*e) - c*f)*sqrt(-B^2*a/(c*f^2)))/(B*e^(2*I*f*x 
+ 2*I*e) + B)) - c*f*sqrt(-B^2*a/(c*f^2))*log(4*(2*(B*e^(3*I*f*x + 3*I*e) 
+ B*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x 
+ 2*I*e) + 1)) - (c*f*e^(2*I*f*x + 2*I*e) - c*f)*sqrt(-B^2*a/(c*f^2)))/(B* 
e^(2*I*f*x + 2*I*e) + B)) + 2*((I*A + B)*e^(3*I*f*x + 3*I*e) + (I*A + B)*e 
^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I 
*e) + 1)))/(c*f)
 
3.8.91.6 Sympy [F]

\[ \int \frac {\sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt {c-i c \tan (e+f x)}} \, dx=\int \frac {\sqrt {i a \left (\tan {\left (e + f x \right )} - i\right )} \left (A + B \tan {\left (e + f x \right )}\right )}{\sqrt {- i c \left (\tan {\left (e + f x \right )} + i\right )}}\, dx \]

input
integrate((a+I*a*tan(f*x+e))**(1/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))**( 
1/2),x)
 
output
Integral(sqrt(I*a*(tan(e + f*x) - I))*(A + B*tan(e + f*x))/sqrt(-I*c*(tan( 
e + f*x) + I)), x)
 
3.8.91.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt {c-i c \tan (e+f x)}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(1/ 
2),x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.8.91.8 Giac [F]

\[ \int \frac {\sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt {c-i c \tan (e+f x)}} \, dx=\int { \frac {{\left (B \tan \left (f x + e\right ) + A\right )} \sqrt {i \, a \tan \left (f x + e\right ) + a}}{\sqrt {-i \, c \tan \left (f x + e\right ) + c}} \,d x } \]

input
integrate((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(1/ 
2),x, algorithm="giac")
 
output
integrate((B*tan(f*x + e) + A)*sqrt(I*a*tan(f*x + e) + a)/sqrt(-I*c*tan(f* 
x + e) + c), x)
 
3.8.91.9 Mupad [B] (verification not implemented)

Time = 11.89 (sec) , antiderivative size = 266, normalized size of antiderivative = 2.44 \[ \int \frac {\sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x))}{\sqrt {c-i c \tan (e+f x)}} \, dx=\frac {4\,B\,\sqrt {a}\,\mathrm {atan}\left (\frac {\sqrt {c}\,\left (\sqrt {a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}{\sqrt {a}\,\left (\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}-\sqrt {c}\right )}\right )}{\sqrt {c}\,f}+\frac {A\,\sqrt {a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{c\,f\,\left (\mathrm {tan}\left (e+f\,x\right )+1{}\mathrm {i}\right )}-\frac {4\,B\,a\,\left (\sqrt {a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}{c\,f\,\left (\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}-\sqrt {c}\right )\,\left (\frac {a}{c}-\frac {{\left (\sqrt {a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}^2}{{\left (\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}-\sqrt {c}\right )}^2}+\frac {2\,\sqrt {a}\,\left (\sqrt {a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}{\sqrt {c}\,\left (\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}-\sqrt {c}\right )}\right )} \]

input
int(((A + B*tan(e + f*x))*(a + a*tan(e + f*x)*1i)^(1/2))/(c - c*tan(e + f* 
x)*1i)^(1/2),x)
 
output
(4*B*a^(1/2)*atan((c^(1/2)*((a + a*tan(e + f*x)*1i)^(1/2) - a^(1/2)))/(a^( 
1/2)*((c - c*tan(e + f*x)*1i)^(1/2) - c^(1/2)))))/(c^(1/2)*f) + (A*(a + a* 
tan(e + f*x)*1i)^(1/2)*(c - c*tan(e + f*x)*1i)^(1/2))/(c*f*(tan(e + f*x) + 
 1i)) - (4*B*a*((a + a*tan(e + f*x)*1i)^(1/2) - a^(1/2)))/(c*f*((c - c*tan 
(e + f*x)*1i)^(1/2) - c^(1/2))*(a/c - ((a + a*tan(e + f*x)*1i)^(1/2) - a^( 
1/2))^2/((c - c*tan(e + f*x)*1i)^(1/2) - c^(1/2))^2 + (2*a^(1/2)*((a + a*t 
an(e + f*x)*1i)^(1/2) - a^(1/2)))/(c^(1/2)*((c - c*tan(e + f*x)*1i)^(1/2) 
- c^(1/2)))))